Search Application Notes & Cards
Learn how to configure Rohde & Schwarz products to fit your application. Search our database by product, technology, or application to find relevant technical documents.
Search Application Notes & Cards
Learn how to configure Rohde & Schwarz products to fit your application. Search our database by product, technology, or application to find relevant technical documents.
1133 Results
Radio frequencies in bands around 28 GHz are being discussed as candidates for mobile communications of the fifth generation (5G). Beam steering will be a key feature in the context of 5G. It will be a major challenge to test the beam steering capabilities of base stations and user equipment in every phase from research and development through production. Conducted measurements will be mainly replaced by over-the-air measurements of electromagnetic radiation. Rohde & Schwarz offers the R&S®NRPM Over-the-Air (OTA) Power Measurement Solution that perfectly fits such measurement needs.Part of this solution are the R&S®NRPM-A66 antenna modules. They have integrated diode detectors. Thus, there are no cables between the antenna and the detector as in traditional setups. This avoids high and potentially unknown RF losses. The R&S®NRPM-A66 antenna modules with their integrated diode detectors are factory calibrated, which means that the user does not have to calibrate them to achieve highly accurate measurement results.This application note contains theoretical background on OTA power and pattern measurements. It gives step-by-step instructions for the verification of the power level and the radiation pattern of a device under test (DUT) in comparison to a golden device, and it presents an approach for verifying the accuracy of beam steering.
29-Aug-2017 | AN-No. 1GP118
The Internet of Things (IoT) is considered the driving force of current and future wireless communications. In release 13, 3GPP has specified Narrowband-IoT (NB-IoT) as a new physical layer. This application note gives a short introduction to NB-IoT and shows the easy measurements with Rohde & Schwarz instruments.
30-Jun-2017 | AN-No. 1MA296
5G networks will need to offer more capacity and flexibility while lowering the operational expenses of the system. Two new technologies can simultaneously address both the increase in capacity and the increase in energy efficiency: Virtualization & Massive MIMO. This white paper provides an overview of test solutions addressing current and future requirements for antenna verification including both conducted and over-the-air (OTA) test methods, which result from applying Massive MIMO antenna technology.This white papers complements the white paper (1MA276) from Rohde & Schwarz, which introduces fundamental theory behind beamforming antennas and provides calculation methods for radiation patterns, a number of simulation results as well as some real world measurement results for small linear arrays.
11-Nov-2016 | AN-No. 1MA286
R&S®Server-Based Testing helps reduce test times for workloads that can be parallelized. 5G New Radio (5G NR) multicarrier signals are an ideal workload because each component carrier can be analyzed independently and in parallel. In an example EVM measurement, scenario test times are reduced significantly even when receiving I/Q data from just a single instrument.
13-Sep-2021
Next Generation Emergency Call (NG eCall) is a extension of eCall, a service provided in Europe with the goal of reducing response times for accidents or other emergencies on the roadways. This application note briefly describes the technology behind NG eCall and presents conformance tests for NG eCall using the R&S®CMW500 RF tester and either the R&S®SMBV100B or the R&S®SMW200A vector signal generator. The test software for NG eCall (R&S®CMW-KA096) makes it quick and easy to perform these tests with the LTE wireless communications standard.
06-Jun-2019 | AN-No. GFM312
Radar test systems are essential in research, development, production and maintenance of radar systems. Most radar tests are expensive to carry out in the field and have a complicated setup and operation. One of the main advantages of the Radar Echo Generator presented in this application note is its ability to generate arbitrary virtual radar echo signals in real time in the laboratory using only commercial measuring equipment. The Radar Echo Generator not only allows to reproduce the results and automate the tests, but also it significantly reduces the measurement effort and costs while providing greater utility for the existing common test equipment. This application note presents a solution for testing the complete radar system by generating any kind of radar echo signals with arbitrary range, Doppler frequency and Radar Cross Section. The Radar Echo Generator makes it possible to perform real time tests on many applications including aerospace & defense and commercial radar systems.
01-Aug-2016 | AN-No. 1MA283
EW receivers are tested in the lab at RF to discover problems before flight testing. This eliminates cost and schedule risk. Flight testing can cost tens of thousands of dollars per hour and must be scheduled many months in advance. In contrast, using test equipment to test at RF might require a certain upfront cost but provides a readily-accessible capability to simulate radar threats at RF for a long time. This application note explains how the angle-of-arrival (AoA) capabilities of EW receivers can be tested with commercial off-the-shelf (COTS) RF test equipment. Topics covered are the generation of scenarios, instrument setup, and setup calibration. We will use a radar warning receiver (RWR) as a proxy for a generic EW receiver in this application note.
22-Dec-2021 | AN-No. 1GP125
This Application Note describes a software program that provides easy creation and transfer of Pulse Trains between a PC and the R&S SMB100A, R&S SMA100A and R&S SMF100A analog signal generators with the Pulse Train option; or between a PC and the ARB of R&S SMBV100A, R&S SMJ100A or R&S SMU200A vector signal generators.
10-May-2011 | AN-No. 1MA148
RF pulse measurements, to characterize the signal in the frequency domain, are traditionally carried out on an RF spectrum analyzer. For time related pulse parameters, oscilloscopes are widely used. However, the measurement capabilities of state of the art test and measurement equipment has evolved over time and crosses domains. With a combination of R&S®RTO digital oscilloscope and dedicated pulse analysis software R&S®VSE-K6, pulse signals can be analyzed in both domains, frequency and time.The R&S®RTO digital oscilloscopes are unique in that they allow output of I/Q data for processing. This application note focusses on signal measurement using this instrument.Analysis of an L-/S-band ATC RADAR utilizing the R&S®RTO2044 oscilloscope running Vector Signal Explorer Software R&S®VSE and Pulse Analysis personality R&S®VSE-K6 is followed by measurements on an X-band RADAR utilizing R&S®FSW, R&S®FPS, R&S®FSV or FSVA signal & spectrum analyzers with the same dedicated R&S®VSE-K6 software.
18-Oct-2016 | AN-No. 1MA249
EW receiver mission data files can contain hundreds of emitters with thousands of modes and beams that must be tested by simulation at RF. Often, these emitters, their modes and beams are listed on intelligence databases and must be imported from a spreadsheet into to an emitter simulation application such as the R&S®Pulse Sequencer software. For this purpose, the R&S®Pulse Sequencer software offers an internal script editor which allows to import user data and automatically generate emitter, sequence or platform configurations that can then immediately be played into RF without any additional software. Furthermore, the R&S®Pulse Sequencer offers a SCPI recorder tool to collect manual entries during scenario data creation into a list of corresponding SCPI commands. This list of commands can easily be used to create user defined scripts that can either run in the internal script editor or an external software (e.g. Matlab, Python).
01-Jul-2021 | AN-No. 1GP131
This application note describes Battery Life Measurements with the R&S®RT-ZVC02/04 Multi-Channel Probe. The measurements are described with the use of an oscilloscope. The R&S®RT-ZVC Multi-Channel Probe can be used with R&S®RTE1000, R&S®RTO2000 or R&S®RTP.
17-Jan-2019 | AN-No. 1TD07
Primer
A power sensor is a fundamental measurement tool in RF engineering. However, today's marketplace is filled with myriad choices, and many are making bold claims about attributes such as measurement speed and readings per second. As a result, it can be difficult to cut through the hyperbole and determine which sensor will actually meet the requirements of a specific measurement.This primer outlines the basics of RF power sensors and highlights a few key characteristics that will help you select the best one for each application. The narrative has three parts. First, we focus on choosing the right type of sensor: multipath, wideband, average power and thermal can satisfy slightly different measurement needs. The second section covers the five major attributes of sensor performance, and what to look for relative to your requirements. Finally, we outline three ways to integrate a sensor into your measurement application.
26-May-2021
The required bandwidth span for power amplifiers is growing, driven by the latest 5G and satellite enhancements.Ideally, amplifiers support multiple bands. This makes wideband testing more essential than ever before.
19-May-2020
Road safety is a global challenge at present and will be in the future. Automotive radar has become a keyword in this area and pushes again a step forward to increase driving comfort, crash prevention and even automated driving.Driver assistance systems which are supported by radar are already common. Most assistant systems are increasing the drivers comfort by collision warning systems, blind-spot monitoring, adaptive cruise control, lane-change assistance, rear cross-traffic alerts and back-up parking assistance.Today's 24 GHz, 77 GHz and 79 GHz radar sensors clearly need the capability to distinguish between different objects and offer high range resolution. That is possible with increased signal bandwidth.Furthermore, those radar systems need to cope with interference of many kinds like the one from other car's radar.This Application Note addresses signal measurements and analysis of automotive radars that are crucial during the development and verification stages. It also shows a setup to verify the functionality of a radar in case of radio interference.
10-Jun-2016 | AN-No. 1MA267
conducted conformance testing according to TS 38.141-1, Rel. 16
3GPP defines the Radio Frequency (RF) conformance test methods and requirements for 5G NR Base Stations (BS) in the technical specifications TS 38.141. This application note describes how all mandatory RF performance tests (TS 38.141-1, chapter 8), according to Release 16, can be performed quickly and conveniently with signal generators from Rohde & Schwarz by either choosing manual operation or a remote control approach.In Addition, a new Python software library comes with this application note to enable the remote control approach of base station testing. This example requires the RsInstrument module which can be found on pypi.org or installed via 'pip' and is provided as is.
24-Oct-2019 | AN-No. GFM315
Verify and optimize your product design under realistic fading conditions in a deterministic lab environment that allows repeatable measurements using standardized and user-defined fading profiles.
27-Oct-2020
This White Paper provides a more detailed view on radar waveforms for Aerospace and Defence and commercial radar systems. Waveforms such as pulse and pulse-Doppler signal, continuous wave and frequency shift keying waveforms are described. It also shows continuous waveform trends designed for specific needs and application differences of continuous wave radar compared to pulse radar systems.
31-Aug-2015 | AN-No. 1MA239
Rohde & Schwarz signal generators present a compact easy-to-use solution for generating phase coherent signals. Different generator models can be coupled to optimally fit user requirements in terms of number of phase coherent channels and RF frequency range.This application note explains how to generate phase coherent signals, details what to consider and how to best calibrate the relative phases and timing between the individual channels. This document also presents various measurements of the phase stability over time for different RF frequencies.
07-Sep-2016 | AN-No. 1GP108
Current Radar development is focusing the area of signal processing. This is taken into account by this educational note, where the R&S®SMW / SMBV instruments on the transmitter side and R&S®FSW / FSV instruments on the receiver side are combined to a closed loop Radar system, performing radar detection by means of pulse compression and digital signal processing. Appropriate Rohde & Schwarz sofware tools for such applications are described as well as the interface between the tools and the test instruments. Target reader group are engineering students who want to perform tests using pulsed or chirped signals.
20-Nov-2014 | AN-No. 1MA234
Spurious emission search with spectrum analyzers is one of the most demanding measurements in the design, verification and production of RF and microwave devices. RF designers, especially in the aerospace & defense industry need to detect very low level spurs. Very narrow resolution bandwidths are required to measure with a low noise floor, hence increasing measurement time. Even working with very fast spectrum analyzers, a spur search may take several hours or even days.In this paper we will review the basics of spurious measurements and how the parameters used can affect the detection performance. A new technique as used in the R&S®FSW-K50 spurious measurement application which makes spurious search faster and easier to configure.
14-Jul-2017 | AN-No. 1EF97
RF system noise contributions define receiver capabilities and sensitivity. The noise figure measures how the critical components affect the signal.
28-Jan-2022
This application note describes the suitability of the R&S®ZVM and R&S®ZVK as multichannel microwave receivers for antenna measurements and RCS measurements including measurements on pulsed signals. Application examples describe the measurement possibilities on pulsed signals using the R&S®ZVM/ZVK as stand-alone units. In addition, various R&S®ZVM/ZVK-based antenna measurement systems of the March Microwave company are presented in detail.
10-Sep-2004 | AN-No. 1EZ52
With the start and spread of 5G communications services and new form factors such as wearables and foldable phones, an increasing number of flexible printed circuit boards (PCB) that support high frequency signals are being produced. These boards must exhibit excellent frequency characteristics. In the past, a PCB’s frequency characteristics were subjected to sampling inspection using a test coupon. For flexible PCBs, a new method is needed to provide repeatable and proper verification. The Yamaha® MP Series combined with the R&S®ZNBT vector network analyzer measure the high frequency characteristics of a production lot at high speed and high accuracy, enabling 100 % measurement of mass produced rigid and flexible PCBs.
27-Jan-2020
The document gives an overview and user guide about a link budget calculator for the main components of a basic OTA system. The calculator shall guide the user to plan link budgets, especially with respect to SNR requirements for the receive components and the vector signal analyzer. An Excel sheet containing the Link Budget Calculator accompanies the application note.
19-Mar-2019 | AN-No. 1EF104
The UWB (Ultra-Wide Band) technology is a low power wide-band technology specified for device to device communication.It is an optimal RF positioning technology that enables accurate and secure peerto-peer distance measurement between mobile devices with robust resistance to interference while consuming very low energy and coexisting well with other radio communication systems.This application note describes how to use the UWB measurement functionality provided by R&S®CMP200 radio communication tester to perform HRP UWB PHY measurements for R&D and production purposes.
19-May-2021 | AN-No. GFM362
The R&S®CMW500 and R&S®SMBV100B are the ideal team for motor vehicle type approval testing of your eCall and ERA-GLONASS cellular modems and their GNSS receivers in line with the EU2017/79 regulation.
02-May-2022
The verification of emissions according to EN or FCC standards is mandatory to avoid any interference with existing users. Besides the common emission tests with measurement bandwidth up to 1 MHz and mean power measurements, most regulations also require to test peak transmission power within a 50 MHz bandwidth to avoid interference with any existing wideband applications, for example radar receivers. This application note provides information how to perform spectral emission measurements on UWB signals with spectrum analyzers using wide bandwidth RBW filters, and explains the capabilities and the limiting factors of the Rohde & Schwarz FSW signal and spectrum analyzer to perform this measurement. The next sections will give further details.
28-Jun-2021 | AN-No. 1EF109
Power amplifiers in digital TDMA mobile phones are fed with current only during the active slot to save power. Using conventional measuring equipment, the noise figure, an important parameter in power amplifiers, can only be determined with the amplifier in continuous operation. However, continuous operation can lead to amplifier overload and produce distorted results. Now there is a convenient way of determining the noise figure of amplifiers with pulsed power supply: using a Spectrum Analyzer (FSP or FSE or FSIQ or ESI), Noise Measurement Software FS-K3 and a function or pulse generator.
19-Dec-2000 | AN-No. 1MA32
Development of modern EW systems is a complex and expensive process, that requires thorough testing against all requirements during all phases of development. To keep cost under control, system level testing in the lab is key and brings several advantages: test cases can be reproduced under the exact same conditions as often as necessary. System level testing in the lab is often performed in a hardware-in-the-loop (HIL) environment. This application note provides some insight into generating radar signals for hardware-in-the-loop testing with the R&S®SMW200A. An introduction to HIL testing and realtime operation of the R&S®SMW200A is given. The hardware and software interface, the PDW format and synchronization and timing mechanisms are described. Additionally, various example scenarios and detailed information about intermediate calculations are provided. The application note also provides information about system requirements for advanced PDW streaming with multiple emitters on multiple parallel streams.
22-Jan-2021 | AN-No. 1GP124