background
RS-Logo RS-Logo Mini
  • Contact
  • Location: SG - Singapore
Aerospace and defense
Air
Land
Sea
Cyber
Space
Multi-domain
Industry partners
Automotive testing
Automotive connectivity and infotainment
Automotive EMC and full-vehicle antenna testing
Automotive radar
Electric drivetrain component testing
In-vehicle networks and ECU testing
Broadcast and media
Broadcast distribution
Media technologies
Critical infrastructure
Air navigation testing Cellular network investigations Civil air traffic control Countering drones
Mobile network testing
Networks and cybersecurity Security screening Spectrum monitoring
Electronics testing
Consumer electronics testing
Digital design testing
EMC testing
High-speed digital interface testing
Medical device testing
Power electronics testing
RF and microwave components
Networks and cybersecurity
Cybersecurity for aerospace and defense Cybersecurity for the financial industry R&S®ComSec Secure networks and cybersecurity for public authorities Secure networks for commercial business Secure networks for healthcare
Research and education
6G research Antenna research Material characterization Particle acceleration Quantum technology Teaching lab solutions
Satellite testing
5G NTN satellite testing Satellite ground station testing and operation Satellite in-orbit testing Satellite payload and bus testing Satellite user terminal testing
Security
Governmental security
Networks and cybersecurity
Security screening
Wireless communications testing
EMC and regulatory testing
IoT / M2M testing
Mobile device testing
Mobile network infrastructure testing
Wireless standards
Test and measurement
Amplifiers
Analyzers
Audio analyzers Broadcast analyzers Digital products and services Measuring receivers Navigation analyzers Network analyzers Phase noise analyzers Signal and spectrum analyzers Vector testers
Antenna test systems and OTA chambers
Automotive radar testers
EMC test equipment
Mobile network testing
Oscilloscopes
Power supplies and source measure units
R&S®ESSENTIALS test equipment
RF and microwave power meters
Signal generators
System components
Wireless device testers and systems
Broadcast and Media
Broadcast Distribution
Media Technologies
Aerospace | Defense | Security
Radiomonitoring
Secure communications
Security scanner
Cybersecurity
Endpoint security Management systems Network encryptors Secure web browser
Service
Cybersecurity services Calibration services Extended warranty & service contracts Obsolescence management On-site services Repair services Service level agreement Service partner program
Services at R&S Singapore Support Service & support request
Knowledge+ Downloads Videos Webinars Research projects Technology Academy
Technology fundamentals
Antennas for mobile and stationary use Hopper signals Monitoring receiver skills Radio direction finding techniques Signal analysis methods
About Rohde & Schwarz
Compliance High vertical integration Sustainability
Rohde & Schwarz Singapore
News & media
NEWS Magazine Press & media contacts Press room
R&S Magazine
Podcast Behind Innovation Protection of critical infrastructures Artificial Intelligence Tradition of innovation Sovereignty 6G: vision or reality? Brief history: 1G to 6G Secure encryption in the quantum age From insight to impact
Seminars Trade shows & events
Overview Jobs Professionals College and university students High school students Culture Events Contact
Choose Location
Contact
Shopping cart

Application Notes for R&S®ZNBT

Learn how to configure Rohde & Schwarz products to fit your application.

  • Applications
More downloads
R&S®ZNBT Overview
Filter by Content
  • Application Note 12
  • Application Card 3
  • White Paper 1
Website Content

Website Content

Find more relevant information about our Products and Solutions.

16 Results

Small Cell Testing in FR2

Comprehensive test solutions guide for production and R&D

Small cell is a compact base station with smaller form factor and lower transmission power in comparison to the conventional macro base station. It covers relatively small area and serves less users. Usually, small cell can be integrated into the existing mobile network. By the evolution of radio access technology, the role of small cell has been changing through the evolution path. In the 2G/3G time, its role was to provide coverage in corner cases. Later during LTE, networks are not just providing coverage but capacity too. Small cells were then used to provide the addition capacity where required without adding additional spectrum. Now in 5G era, network operators use densification as an important strategy to provide seamless 5G services which demand coverage, capacity and performance too. With use cases requiring the 5G millimeter wave (mmW) rollouts, it makes sense to use small cells for densification due to the propagation characteristics of mmW.In this application note, we will shed light on the testing aspects of a small cell throughout the product life cycle with particular focus on the production test solution for the small cell device under test (DUT) in FR2 (frequency range 2, mmW frequency band) in Over the Air (OTA) environment for option 6 split based on radio communication tester R&S®CMP200 and OTA chamber R&S®CMQ200. The document is complemented with more insights into test solutions used in typical R&D test applications towards the second half of the application note.

19-Jun-2023 | AN-No. 1SL395

Accurate Test Fixture Characterization and De-embedding

For measurements of non-connectorized devices, test fixtures, probes or other structures are used to adapt from the coaxial interface of the test setup to the device under test (DUT). For accurate measurements of the DUT, these lead-ins and lead-outs need to be characterized, so that their effects can be mathematically removed, i.e. de-embedded from the measurement results.This application note provides practical hints to accurately characterize and de-embed these lead-in and lead-out structures with R&S Vector Network Analyzers ZNA, ZNB, ZNBT and ZND. As de-embedding is also essential in other test equipment like oscilloscopes, etc., this guide also describes, how lead-ins and lead-outs can be accurately characterized with a VNA and then exported as an S-Parameter file to be used by other test instruments.

19-Sep-2022 | AN-No. 1SL367

Testing insertion loss of PCB signal structures with Delta‑L 4.0

With continuously increasing data rates, signal integrity in high speed digital designs becomes more and more demanding

08-Jul-2022

Method of implementation (MOI) for IBTA 25+ Gbps serial interface cable test

This application note describes Methods of Implementations (MOI) for precise, fast and error-free compliance testing of high-speed backplanes and direct attach copper cables (DAC) according to InfiniBand EDR and HDR specifications, based on 25 Gb/s and 50 Gb/s signaling per lane with vector network analyzers from Rohde & Schwarz.

07-Apr-2021 | AN-No. GFM357

Method of implementation (MOI) for IEEE up to 100 Gbps interface channel test

This application note describes Methods of Implementations (MOI) for precise, fast and error-free compliance testing of high-speed backplanes and direct attach copper cables (DAC) according to IEEE 802.3bj, IEEE 802.3by, IEEE 802.3cd and IEEE 802.3ck, based on 25 Gb/s, 50 Gb/s and 100 Gb/s signaling per lane with vector network analyzers from Rohde & Schwarz.

07-Apr-2021 | AN-No. GFM356

Time Domain Measurements using Vector Network Analyzer ZNA

Vector Network Analyzers of t ZNA and ZNB family are able to measure magnitude and phase of complex S-parameters of a device under test (DUT) in the frequency domain. By means of the inverse Fourier transform the measurement results can be transformed to the time domain. Thus, the impulse or step response of the DUT is obtained, which gives an especially clear form of representation of its characteristics. For instance, faults in cables can thus be directly localized. Moreover, special time domain filters, so-called gates, are used to suppress unwanted signal components such as multireflections. The measured data "gated" in the time domain are then transformed back to the frequency domain and an Sparameter representation without the unwanted signal components is obtained as a function of frequency. As usual, other complex or scalar parameters such as impedance or attenuation can then be calculated and displayed.

30-Jul-2020 | AN-No. 1EP83

R&S®VISA

R&S®VISA is a standardized software library that allows fast communications over diverse interfaces with a wide variety of T&M instruments that are detected on the network from PC applications. R&S®VISA also includes a trace tool that simultaneously monitors communications between multiple applications and T&M instruments, and permits targeted analysis with the aid of efficient filters.

26-May-2020 | AN-No. 1DC02

Rapid Characterization of High Speed Digital Channels using a Multiport VNA

Vector Network Analyzers (VNA) are gaining popularity in the Signal Integrity community as time domain measurement and analysis tools. VNAs with 8 ports or more can provide significant decreases in test time by migrating from a 4-port measurement system to an 8-port measurement system. For tight tolerance DUTs that are barely within the test limit lines, small increases in accuracy can be realized by testing all of the test parameters at once, because the entire test setup is at the same temperature. This application note discusses the thermal advantages of testing an 8-port DUT with the R&S ZNBT VNA. The use of the ZNBT to assess and debug two differential pairs in a 20-inch backplane is presented.

18-Mar-2020 | AN-No. 1EZ83_0E

Reliable test of flexible printed circuit boards

With the start and spread of 5G communications services and new form factors such as wearables and foldable phones, an increasing number of flexible printed circuit boards (PCB) that support high frequency signals are being produced. These boards must exhibit excellent frequency characteristics. In the past, a PCB’s frequency characteristics were subjected to sampling inspection using a test coupon. For flexible PCBs, a new method is needed to provide repeatable and proper verification. The Yamaha® MP Series combined with the R&S®ZNBT vector network analyzer measure the high frequency characteristics of a production lot at high speed and high accuracy, enabling 100 % measurement of mass produced rigid and flexible PCBs.

27-Jan-2020

Measurement of the Phase Difference between several Signals

Many applications in aerospace and defense as well as in mobile communication require a defined magnitude and phase relation between several signals, for example, to design a smart antenna array and it's distribution network, or to ensure accurate phase alignment between different transmitter or receiver chains of T/R modules. Magnitude can be measured with spectrum analyzers or power meters. For phase measurements, a vector network analyzer is the easiest, fastest and most accurate instrument.This application note shows how to measure the phase accurately between several signals using vector network analyzers of the R&S®ZNA, R&S®ZNB and R&S®ZNBT families.

11-Jul-2019 | AN-No. 1EZ82

Verify beamformer ICs for phased array antennas

Integrated beamformer ICs shrink the size of antenna feed electronics. Multiport network analyzers shrink the necessary test setup down to one instrument.

08-Jan-2019

RSCommander

Versatile Software Tool for Rohde & Schwarz Instruments

RSCommander is a versatile software tool for a wide range of Rohde & Schwarz spectrum-, network analyzers, signal generators and oscilloscopes. It allows for automatic instrument discovery, making screenshots, reading traces, file transfer and simple script creation.

24-Dec-2017 | AN-No. 1MA074

In Situ Calibration Utilizing the R&S®ZN-Z3x Inline Calibration Units

This application note reviews a new calibration subsystem which consists of Inline Calibration Units (ICUs). These ICUs are designed for in situ use, so they are left in place both during the calibration procedure and during the measurement of the Device Under Test (DUT).This adds versatility, convenience and accuracy to the VNA based measurement system, as it means the calibration can be refreshed at any time without manually disconnecting the DUT from the test system.

29-Sep-2017 | AN-No. 1EZ71

Antenna Array Testing - Conducted and Over the Air: The Way to 5G

5G networks will need to offer more capacity and flexibility while lowering the operational expenses of the system. Two new technologies can simultaneously address both the increase in capacity and the increase in energy efficiency: Virtualization & Massive MIMO. This white paper provides an overview of test solutions addressing current and future requirements for antenna verification including both conducted and over-the-air (OTA) test methods, which result from applying Massive MIMO antenna technology.This white papers complements the white paper (1MA276) from Rohde & Schwarz, which introduces fundamental theory behind beamforming antennas and provides calculation methods for radiation patterns, a number of simulation results as well as some real world measurement results for small linear arrays.

11-Nov-2016 | AN-No. 1MA286

Characterizing Active Phased Array Antennas

Designing and implementing an active phased array antenna requires precise characterization of individual components and the integrated performance of the array. To ensure an accurate test of the intended adaptive nature of the active phased array antenna, the embedded algorithms need to be tested as well.This application note aims to explain test procedures and give recommendations towards characterization of the relevant parameters for active phased array antennas and their passive subsystem, as often used in applications for Mobile Communication and RADAR. This application note describes transmit signal quality testing, multi-element amplitude and phase measurement techniques both in receive and transmit cases and introduces a new automated test methodology antenna radiation pattern measurement over frequency. This paper also describes the test system used for transmit and receive module (TRM) characterization in active array antennas.

04-Jul-2016 | AN-No. 1MA248

Fast Remote Instrument Control with HiSLIP

This application note introduces the IVI High Speed LAN Instrument Protocol (HiSLIP) and outlines its features. HiSLIP is the successor to the VXI-11 LAN remote control protocol. This document also describes guidelines for using this protocol.

12-Nov-2014 | AN-No. 1MA208

background
facebook
youtube
feed
LinkedIn
twitter
Rohde & Schwarz Regional Headquarters Singapore Pte Ltd
Rohde & Schwarz is striving for a safer and connected world with its leading-edge solutions. Committed to innovation for more than 90 years, the independent technology group acts long-term and sustainably, making it a reliable partner to its industry and government customers worldwide. Rohde & Schwarz established its presence in Singapore in 1997, offering state-of-the-art solutions to our customers in all our business fields.
Address

9 Changi Business Park Vista

#03-01

Singapore 486041

Contact

+65 6307 0000

sales.singapore@rohde-schwarz.com

© 2025 Rohde & Schwarz

  • Cookie Information
  • Imprint
  • Statement of Privacy
  • Terms & conditions
  • Jobs & Career
  • Terms of use