99 結果
グラフィカル・ユーザーインタフェースはわかりやすく、無線機器が各種テクノロジーの3GPPプロトコルに準拠しているかどうかを簡単にテストすることができます。
2月 20, 2015
LTE user equipment (UE) receiver performance has significant impact to cellular radio network coverage and capacity. It determines the maximum data throughput across the air interface between the LTE base station (eNB, evolved node B) and the mobile network subscriber UE, thus it determines the total capacity across the air interface. Therefore, it is one of the most important measurements to verify the actual receiver performance of individual devices, and a key metric to compare different devices, in particular.This paper shall give an introduction to receiver performance measurements and discusses the measurement metrics as well as the challenges of over the air (OTA) measurements.
Aug 31, 2017 | AN 番号 1ST001
最近の通信デバイスは、ごく限られたスペースの中で多くの規格をサポートしています。そのため、同一周波数バンドの占有に起因した干渉が生じることがあります。
3月 14, 2016
LTEは、継続的に開発が進められています。リリース10(LTE-Advanced)では、主な機能拡張としてキャリアアグリゲーション(CA)が導入されました。リリース11と12では、いくつかの新しいコンポーネントがLTEに追加されます。そのうちいくつかは既存の機能の拡張(CAの改良など)ですが、CoMP(coordinated multipoint)などのまったく新しい概念もあります。このアプリケーションノートでは、ローデ・シュワルツのベクトル信号発生器、シグナル/スペクトラム・アナライザ、ワイドバンド無線機テスターを使用したLTE-Advanced(リリース11および12準拠)テストソリューションを紹介します。
7月 14, 2016 | AN 番号 1MA272
航空交通管制(ATC)レーダー、軍事用航空交通監視(ATS)レーダ、気象レーダはSバンドの周波数範囲で動作しています。実際に、LTE(ロング・ターム・エボリューション)などの4G通信システムはこの周波数を使用しています。
3月 28, 2014 | AN 番号 1MA211
このアプリケーションノートでは、ERA-GLONASSを支えるテクノロジーについて概要を説明し、R&S®CMW500 RFテスタとR&S®SMBV100A ベクトル信号発生器を使用したERA-GLONASSコンフォーマンステストを紹介します。
1月 24, 2018 | AN 番号 1MA251
R&S®CMW 無線機テスタは、Bluetooth® Low Energy(LE)の回線およびモジュールのデザインと検証に最適です。
1月 27, 2017
本カタログでは、当社の無線(OTA)およびアンテナテストソリューションの概要を紹介します。お客様は、これらのソリューションをラボに導入することで、可能性の限界を押し広げることができます。
Evolution of Carrier Aggregation (3GPP Release 10 to 13) - Poster
このアプリケーションノートでは、ローデ・シュワルツのベクトル信号発生器、シグナル/スペクトラム・アナライザ、ワイドバンド無線機テスタを使用したLTE-Advanced(リリース10)テストソリューションを紹介します。
9月 03, 2014 | AN 番号 1MA166
このアプリケーションノートでは、NG eCallを支えるテクノロジーについて説明し、R&S®CMW500 RFテスタを使用したNG eCallコンフォーマンステストを紹介します。
6月 06, 2019 | AN 番号 GFM312
R&S CMWとR&S CMWrunを使用するRohde & Schwarz Bluetooth RFテストソリューションは、Bluetooth RFテストスイートに適合しています。このアプリケーションノートでは、これらのテストの一般的なセットアップと必要な設定を紹介します。
5月 04, 2015 | AN 番号 1MA261
1MA210 - LTEリリース9の機能のテスト。このアプリケーション・ノートでは、ローデ・シュワルツの測定器を使用したLTEリリース9の機能の電子計測方法について説明します。
4月 26, 2013 | AN 番号 1MA210
eCallおよびERA-Glonassシステムモジュールのテスト - R&S CMW500およびR&S SMBV100Aは、eCallおよびERA-Glonassの移動体モデムとGNSS受信機をラボでテストするのに最適な組み合わせです。
5月 02, 2022
手動/自動無線共存テストの詳細な実行手順
2020年末には、ライセンスバンド(免許が必要な周波数帯)およびアンライセンスバンド(免許が不要な周波数帯)を使用して動作するモノのインターネット(IoT)製品が世界に200億以上ありました。よりスマートでつながりのあるライフスタイルを取り入れる人が増えているため、こうした成長傾向は安定して今後数年間は維持されるものと予想されます。このため、RF環境は今日よりもはるかに過密で過酷になります。RFスペクトラムの複雑さを理解するために、2021年にローデ・シュワルツからホワイトペーパーが公開されました。このホワイトペーパーでは、一日のさまざまな時間に複数の場所で観察されたRFスペクトラムのアクティビティーについて特集しています。観察場所は、人口密度と、それらの場所の既知のRFトランスミッターの数およびそれらの周波数に基づいて選択されています。また、ほとんどのIoTデバイスが免許不要のスペクトラムを利用するため、ISMバンドのチャネル使用率は平均して高くなると結論付けています。ホワイトペーパーでは、無線共存テストの実行中は、テスト条件はデバイスが動作することを想定した運用RF環境を反映している必要があります。そうでないと、RF性能の評価では、実際の運用状況では存在しない理想的なケースしか反映されません。すべてのデバイスを実環境でテストできるとは限らないため、実環境を可能な限り再現するためには、関連するテスト手法を定める必要があります。これにより、さまざまなRF条件下におけるRFデバイスのレシーバーの動作をよりよく理解することができます。また、スペクトラムが複雑化している場合は、将来のデバイスの動作を理解するために、測定を実行することもお勧めします。このため、RFレシーバーのバンド内/バンド外干渉信号の処理能力を徹底的に評価することも必要です。無線共存性能を確保するための規制適合要件については、ANSI C63.27が現在公開されている唯一のテスト規格で、デバイスの共存テストの実行方法を提示しています。テストの複雑さは、1つまたは複数の干渉信号による障害が発生した場合のユーザーの健康上のリスクに基づいています。この規格は、テストセットアップ、測定環境、干渉信号のタイプおよび戦略、主要性能指標(KPI)を用いる物理層の性能品質測定パラメータ、エンドツーエンドの機能的無線性能(FWP)のアプリケーション層パラメータに関するデバイスメーカーのガイダンスも提供します。このアプリケーションノートでは、テストセットアップ、測定パラメータ、干渉信号に関するANSI C63.27-2021バージョンで提供されているガイダンスに従っています。また、必要な信号や意図しない干渉信号を発生させ、測定を実行して、デバイスのPER、ピング遅延、データスループット性能をモニターするために、ローデ・シュワルツの標準化されたテスト機器を設定する方法を明確に示します。このアプリケーションノートでは、伝導/放射性手法を用いて測定を実行する手順を詳細に説明します。このドキュメントでは、手動と自動の両方の測定器の設定方法を説明しています。自動化スクリプトは、Pythonスクリプト言語を使用して書かれています。また、このアプリケーションノートと一緒に無料でダウンロードできます。スクリプトを実行するために必要な公式 は、PYPIデータベースで提供されています。
11月 10, 2022 | AN 番号 1SL392
このアプリケーションノートでは、R&S CMWプラットフォームを使用して、Bluetoothテスト仕様バージョン5で規定された測定を実施する方法を説明します。
6月 19, 2017 | AN 番号 1MA282